β-Adrenergic Receptor-PI3K Signaling Crosstalk in Mouse Heart: Elucidation of Immediate Downstream Signaling Cascades
نویسندگان
چکیده
Sustained β-adrenergic receptors (βAR) activation leads to cardiac hypertrophy and prevents left ventricular (LV) atrophy during LV unloading. The immediate signaling pathways downstream from βAR stimulation, however, have not been well investigated. The current study was to examine the early cardiac signaling mechanism(s) following βAR stimulation. In adult C57BL/6 mice, acute βAR stimulation induced significant increases in PI3K activity and activation of Akt and ERK1/2 in the heart, but not in lungs or livers. In contrast, the same treatment did not elicit these changes in β(1)/β(2)AR double knockout mice. We further showed the specificity of β(2)AR in this crosstalk as treatment with formoterol, a β(2)AR-selective agonist, but not dobutamine, a predominantly β(1)AR agonist, activated cardiac Akt and ERK1/2. Acute βAR stimulation also significantly increased the phosphorylation of mTOR (the mammalian target of rapamycin), P70S6K, ribosomal protein S6, GSK-3α/β (glycogen synthase kinase-3α/β), and FOXO1/3a (the forkhead box family of transcription factors 1 and 3a). Moreover, acute βAR stimulation time-dependently decreased the mRNA levels of the muscle-specific E3 ligases atrogin-1 and muscle ring finger protein-1 (MuRF1) in mouse heart. Our results indicate that acute βAR stimulation in vivo affects multiple cardiac signaling cascades, including the PI3K signaling pathway, ERK1/2, atrogin-1 and MuRF1. These data 1) provide convincing evidence for the crosstalk between βAR and PI3K signaling pathways; 2) confirm the β(2)AR specificity in this crosstalk in vivo; and 3) identify novel signaling factors involved in cardiac hypertrophy and LV unloading. Understanding of the intricate interplay between β(2)AR activation and these signaling cascades should provide critical clues to the pathogenesis of cardiac hypertrophy and enable identification of targets for early clinical interaction of cardiac lesions.
منابع مشابه
Targeted Inhibition of β-Adrenergic Receptor Kinase-1–Associated Phosphoinositide-3 Kinase Activity Preserves β-Adrenergic Receptor Signaling and Prolongs Survival in Heart Failure Induced by Calsequestrin Overexpression
OBJECTIVES Desensitization and down-regulation of -adrenergic receptors ( ARs) are prominent features of heart failure largely mediated by increased levels of AR kinase-1 ( ARK1). BACKGROUND -adrenergic receptor kinase 1 interacts with phosphoinositide-3 kinase (PI3K), and upon agonist stimulation, the ARK1/PI3K complex is recruited to agonist-stimulated ARs. Here we tested the hypothesis that ...
متن کاملP3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory
Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...
متن کاملA Practical Approach to Cell Signaling Pathway Analysis
Cellular kinase signal transduction pathways are involved in the regulation of many important cellular processes such as cell survival, differentiation and apoptosis. Kinase signaling networks are typically characterized by multiple kinases arranged in cascades containing nodes with feedback loops, and crosstalk between pathways. One of the most widely studied pathways is the phosphoinositide-3...
متن کاملA Practical Approach to Cell Signaling Pathway Analysis
Cellular kinase signal transduction pathways are involved in the regulation of many important cellular processes such as cell survival, differentiation and apoptosis. Kinase signaling networks are typically characterized by multiple kinases arranged in cascades containing nodes with feedback loops, and crosstalk between pathways. One of the most widely studied pathways is the phosphoinositide-3...
متن کاملcAMP-Epac Pathway Stimulation Modulate Connexin-43 and MicroRNA-21 Expression in Glioma Cells
Introduction: Malignant astrocytic gliomas are the most common and lethal brain malignancies due to their refractory to the current therapies. Nowadays, molecular targeted therapy has attracted great attention in treatment of glioma. Connexin 43 (Cx43) and micro ribonucleic acid- 21(miR-21) are among molecules that are involved in glioma development and progression. These molecules showed...
متن کامل